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ARTIMATION  
TRANSPARENT ARTIFICIAL INTELLIGENCE AND AUTOMATION TO AIR TRAFFIC 
MANAGEMENT SYSTEMS’ 

 

This D3.1 REPORT ON STATE OF ART -AI SUPPORT IN ATM is part of a project that has received funding 
from the SESAR Joint Undertaking under grant agreement No [894238] under European Union’s 
Horizon 2020 research and innovation programme.  

 
 

Abstract  

This report presents a state –of-the-art on Artificial Intelligence (AI) in Air Traffic Management 
(ATM) domain. Here, the main objective is to review and identify AI techniques, methods and 
algorithms that have been applied in different ATM domain’s related tasks. Also, it discusses 
transparency and explainability in AI algorithms based on a systematic literature review of the 
most relevant topics i.e., Take-off Time Prediction, Delay Propagation and Conflict Avoidance 
in the ATM domain. Besides, the report includes state-of-art techniques and approaches for 
data visualisation, and lifelong machine learning with human-centered AI. Finally, challenges 
in ATM with respect to AI are also reported here.  
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1 Introduction  

Artificial Intelligence’ term was first used in 1956 for the first “Dartmouth Summer Research Project 
on Artificial Intelligence”. Since then, the discipline has gone through several ‘summers’ implying 
important interests and developments, and ‘winters’ referring to disinterest from the field, associated 
with scepticism1. EXplainability of Artificial Intelligence (XAI), is strongly linked to the systems it 
explains, went through the same phases, and is actually in its third generation now [1]. AI in ATM 
roughly followed the same pattern with some delay. During the last decade, AI in ATM roughly evolved, 
from AI systems used to optimize the traffic to AI systems used to predict various objects i.e., predicting 
4D trajectories. 
 
Under normal conditions, Europe has to deal with very complex and busy airspace. In this regard, it is 
expected that automation and AI solutions would not obviously replace humans, but on the contrary, 
they should ensure that air traffic controllers have the necessary support tools to make the best 
decisions and manage traffic efficiently. In many ways, it's about making AI part of the team.  
 
In recent years, ATM services have successively built air traffic control systems, airport surface 
monitoring systems, electronic flight data systems, digital clearance systems, collaborative decision-
making systems, traffic management systems, etc. These systems have accumulated a large amount 
of air traffic control data that has potential value. Analyzing the data of air traffic control by using 
machine learning (ML) algorithms can provide a guarantee for safe production and enable the air traffic 
control system to provide services more safely and efficiently [2]. There are also some limitations of 
using machine learning algorithms in the ATM domain such as explainability and transparency which 
are discussed more elaborately in chapter 3. 
 
Therefore, the establishment of aviation big data storage and analysis platform has become an 
important task of air traffic management. A big data platform is designed using Hadoop Storage 
Module (HSM) which stores the data output by each system used by the ATM system and the platform 
provides decision making including flight delay analysis, operational efficiency, and experience routes 
using Mahout machine learning library [3]. 
 
Machine Learning algorithm is deployed to forecast the workload of the air traffic controllers using the 
routinely-recorded flight data [4]. For instance, in [5], an AI system is developed as a digital assistant 
to support air traffic controllers in resolving potential conflicts. The proposed system consists of two 
core components: an intelligent interactive conflict solver (ICS) to acquire air traffic controller’s 
preferences, and an AI agent based on reinforcement learning to suggest conflict resolutions capturing 
those preferences. While such a system shows interesting advances in Human/AI collaboration, it fails 
to propose transparent and explainable reasoning for the proposed solution. Such a lack of 
transparency is not suitable for live critical systems. 

 

 

 
1 https://www.bbc.com/news/technology-51064369  

https://www.bbc.com/news/technology-51064369
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2 Background and related work 

With the rise in the airline industry2 and the construction of new airports and runways such as Istanbul 
New Airport, Beijing Daxing International Airport, Western Sydney Airport etc.3, air traffic has 
increased dramatically in the past few years. The reason behind this increment of air traffic is economic 
and demographic growth: the growing middle-class is stimulating airline activity. Another 
development factor is the emergence of low-cost airlines offering competitive prices on popular 
destinations4. Consequently, the growing air traffic has put additional pressure on air traffic control 
system that handles thousands of flights per day. To avoid delays and collisions, ATM must work 
efficiently. Today, airspace control has the challenge of merging information from independent and 
heterogeneous systems to minimize air safety risks and facilitate the decision-making process. Some 
notable information those are vital for the ATM are:  

Communication: Communication between air traffic controllers and pilots remains a vital part of air 
traffic control operations, and communication problems can result in hazardous situations [6]. Air 
traffic controllers constantly need to intensely listen to every single word said by pilots and other 
controllers. They need to be aware of what is going on in their space as well as other sectors around 
them. If a problem arises, they need to act on it at the very moment. It puts a lot of pressure on air 
traffic controllers.  

Weather: Another biggest issue for a controller is the weather [8]. It adversely affects the work and 
function of air traffic control staffs. The more it is complex; the more workload is laden on them. A bad 
weather means a bad day for them.  

Frequency congestion: Frequency congestion is another common cause of communication breakdown 
in ATM system5. It’s important to remember that a single radio frequency is capable of handling only 
a limited number of radio messages within any specified time. The limitations are determined by 
multiple factors including length of each transmission, number of aircraft, frequency re-transmission 
and associated workload. Ideally, a pilot should be able to transmit a message at any time of his/her 
choosing and receive an immediate reply. As radio traffic increases above the ideal, the frequency 
becomes congested. The pilot must wait for a break in transmissions to pass a message and may have 
to wait for a response from the ATCO, who must judge different priorities.  

Air Traffic Management (ATM): ”ATM is the dynamic, integrated management of air traffic and 
airspace including air traffic services, airspace management and air traffic flow management safely, 
economically and efficiently through the provision of facilities and seamless services in collaboration 
with all parties and involving airborne and ground-based functions”[6]. For safe and efficient 
movement of aircraft during all phases of operations both airborne and ground-based functions (i.e., 
air traffic services, airspace management and air traffic flow management) are required. Air traffic 
management comprises three main services: air traffic services (ATS), air traffic flow management 
(ATFM) and airspace management (ASM). 
 

 

 
2 https://www.statista.com/statistics/193533/growth-of-global-air-traffic-passenger-demand/  
3 https://edition.cnn.com/travel/article/new-airports-and-terminals/index.html  
4 https://coflight-cloud-services.com/growth-by-2035/  
5 https://www.flightsafetyaustralia.com/2020/07/frequency-congestion/  

https://www.statista.com/statistics/193533/growth-of-global-air-traffic-passenger-demand/
https://edition.cnn.com/travel/article/new-airports-and-terminals/index.html
https://coflight-cloud-services.com/growth-by-2035/
https://www.flightsafetyaustralia.com/2020/07/frequency-congestion/
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Air traffic services (ATS): Main functions of ATS are to prevent collisions by applying appropriate 
separation standards and issue timely clearances and instructions that create an orderly flow of air 
traffic (e.g., accommodate crew requests for desired levels and flight paths, ensure continuous climb 
and descent operations, reduce holding times in the air and on the ground). Their tasks include:   

a) Air traffic control (ATC): Area Control service, Approach control service, Aerodrome control 
service.   

b) Advisory Service  
c) Flight information service (FIS) 
d) Alerting service 

 
ATS with the general purposes of ensuring safe and orderly traffic flow (facilitated by the air traffic 
control (ATC) service) as well as providing the necessary information to flight crews (flight information 
service, FIS) and, in case of an emergency, to the appropriate bodies (alerting service). ATS is mostly 
performed by air traffic controllers. ATS relies on tactical interventions by the controllers and direct 
communication with the flight crews usually during the entire flight. 
 
Air traffic flow management (ATFM): The primary objective is to regulate the flow of aircraft as 
efficiently as possible to avoid the congestion of certain control sectors. The ways and means used are 
increasingly directed towards ensuring the best possible match between supply and demand by 
staggering the demand over time and space and by ensuring better planning of the control capacities 
to be deployed to meet the demand. Supply and demand can be managed by imposing various 
restrictions on certain traffic flows (e.g., assigning CTOTs or requiring flights matching certain criteria 
to use specific routes). Also, supply can be increased by appropriate sector management (e.g., 
increasing the number of controllers working at the same time). AFTM measures can be seen as pre-
tactical, as they do not affect the current situation but rather the near future. 
 
Airspace management (ASM): The purpose of ASM is to manage airspace as efficiently as possible to 
satisfy its many users, both civil and military. This service concerns both the way airspace is allocated 
to its various users (by means of routes, zones, flight levels, etc.) and the way in which it is structured 
to provide air traffic services. 
 
The overview of the ATM structure is presented in Figure 1 below. 

 
Figure 1. Overview of ATM structure 
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Other than the above-mentioned structure and roles of them in ATM, there are other ground tasks 
such as Take-off Time Prediction, Delay Propagation and Conflict Avoidance which are of importance 
that must be addressed. These tasks are described briefly below:  

Take-off Time Prediction  

The direct or indirect costs induced by delay in ATM have driven research to predict and minimize air 
traffic delays. The take-off time being one of the roots (indicator) of the delay of an airplane, it impairs 
all transportation network, and predicting it is a key to better predict and enhance air traffic.  As a 
result, it is the not such a surprise that it has been widely studied in the last decade, surely catalyzed 
by the growing availability of aircraft trajectory data like ADS-B data, radar data lately, and the 
availability of user-friendly machine learning frameworks.  
 
Research investigating departure delay can be classified based on  

i) The spatial granularity of the delay being predicted, from aggregated delay e.g., predicting 
the aggregated delay of the network [7]–[9] of a particular route, or an airport to the delay 
of a simple aircraft trained on a particular Origin- Destination route[10], [11], or more 
general training [9] 

ii) The temporal granularity of the prediction, from a simple classification e.g., delayed or not 
delayed [12] to general classes of delay e.g., less than 10 minutes, more than 15 minutes 
[10], or even to precise delay and eventually with probabilities[12]–[14] 

iii) The look-ahead time of the prediction e.g., strategic, pre-tactical [11], tactical  

iv) The model used to predict the delay  

v) The features used to predict the delay e.g., leg delay [13], weather [10]. 

 

Delay Propagation 

Like Take-off time prediction, delay propagation has gained an interest with the increasing congestion 
of the traffic and the need to predict better the demand, to better balance it with the capacity, and is 
surely catalysed by data and ML framework availability. In delay propagation, the main objective is to 
understand how the delays originating at one location propagates downstream into all or parts of the 
network, that is from aircraft to airports and airlines. 
 
Delay propagation can be studied from the point of view of one aircraft, and how the delay propagates 
on the trajectory, or any subsequent trajectory for the aircraft or the airline [15], [16], and how robust 
are airlines to such delay, and how they can recover from it [17], [18]. 
 
Nonetheless, from ATM point of view, it is more interesting to focus on the system as all [19]–[21], 
must it be: 
 

i) From a microscopic point of view i.e., representation of the different aircraft, mostly using multi-
agent systems [22], [23] [24] 

ii) From a macroscopic point of view i.e., density, flows, statistics, using statistical models and 
heuristics [25], [26] 
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iii) From any intermediate mesoscopic point of view, using queuing models [20], network theory 
approaches [18], [21] and machine learning [9], [11], [27] [28].  

 
Indeed, any delay can induce delay on other aircrafts, generating problem not centralised on one 
aircraft or company. Problems can even propagate again to aircraft or the company by increasing the 
number of flights during a certain period, thus creating an imbalance with the capacity. 

Conflict Avoidance 

Conflict avoidance in ATM is one of the important and searched subjects in the ATM domain. Being 
one of the primary task of ATCos from the beginning of ATM, the domain naturally contains a lot of 
work, from the beginning of ATM [29] to now with lot of various approaches.  
 
In the following, we use Latombe’s formalization [30] which is widely used in the general motion 
planning problem is based on the notion of configuration space as defined in Lozano-Perez and Udapa’s 
work [31], [32]. 
 
The conflict avoidance problem is combinatorial: the huge number of heterogeneous airplanes, the 
size of the airspace and the four dimensions (space + time) make the configuration space (C) 
tremendous. The size of the configuration space has led most research to either i) sample non 
iteratively the configuration space C by mostly using so-called ‘operational’ manoeuvres, which mimic 
orders that controllers would give to avoid separation losses, or ii) use heuristics to navigate iteratively 
in C. 

Non-Iterative Sampling 

Most algorithms, with a non-iterative sampling of the configuration space C, generate a graph of 
possible manoeuvres for each airplane, and explore this graph. Some algorithms use exact methods 
that will explore extensively this graph, using methods such as Mixed-Integer Linear Programming 
(MILP) [33], [34], constraint programming [35],or an hybridization between branch and bound 
algorithm and evolutionary algorithm [36], the later to reduce the exploration of the first. Other 
algorithms use approximate methods, exploring this graph by using meta-heuristics such as genetic 
algorithms [37], benchmarked in [38] or ant algorithms [39]. Other algorithms that samples non 
iteratively C will sample differently, parameterizing B-splines with genetic algorithms [40] or modifying 
way-points with simulated annealing [41], [42]. 

Iterative Sampling 

Iterative Navigation Algorithms, navigating iteratively in the configuration space C, may be centralized 
or decentralized. Centralized algorithms use wave propagation analogies [43], [44], Mixed-Integer 
Linear Programming at discrete times to find the minimal modification to avoid separation losses [45], 
bi-harmonic field—extended potential field—[46], centralized harmonic navigation functions [47], or 
geometric methods—methods using speed vector to determine speed vector modifications [48], [49]. 
In Decentralized algorithms, airplanes decide their trajectories according to their local behaviour, using 
algorithms such as modified voltage potential [50] which is a modification of potential fields , bi-polar 
navigation functions[51], [52], or multi-agent systems [53]–[56]. 

2.1 Related projects in ATM domain 
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Resurgent interest in AI techniques focused research attention on their application in aviation systems 
including ATM. Recent developments and considerations for certification of ATM task through 
different AI/ML techniques (specially different neural networks) are presented in [7]. Considering the 
tasks in the projects, most of the work is centered around prediction and forecasting.  A list of ATM 
related projects, its timeline and AI/ML models are presented in Table 1. 

 
Table 1. List of ATM projects and AI/ML models 

No. Project Name/Task Year AI/ML Models Project Link 
1 Sector Capacity Prediction 2018 Feed Forward Neural 

Network (FFNN) 

6 

2 Take-off time prediction 2019 Gradient Boosted Decision 
Trees (GBDT) 

7 

3 Runway configuration 
prediction 

2019 Recurrent Neural Network 
Encoded Decoder with 
Attention Mechanism 

8 

4 Pre-Tactical Traffic 
Forecast  

2020-present Random Forest 9 

5 Air Traffic Control (ATC) 
with Multi Agent 
Reinforcement Learning  

2020 Message Passing Neural 
Networks (MPNN) 

10 

6 Air traffic flow 
management (ATFM) with 
multi-agent reinforcement 
learning  

2020-present Graph Neural Networks 
(GNN) 

11 

7 Carfew infringement 
prediction 

2020-present Recurrent Neural Network 
(RNN) 

12 

8 AICHAIN A platform for 
privacy preserving 
federated machine 
learning using blockchain  

2020-present Federated machine learning 
and blockchain 
 
 

13 

9 Novel tools to evaluate 
ATM systems coupling 
under future deployment 
scenarios - Domino 

2018-2019 Agent-based model, Trip 
Centrality 

14 

10 Capacity optimization in 
trajectory-based 
operations – COTTON 

2018-2019 Bayesian Networks 15 

 

 
6 https://www.sesarju.eu/sesar-solutions/management-dynamic-airspace-configurations  
7 https://www.sesarju.eu/sites/default/files/documents/sid/2019/papers/SIDs_2019_paper_36.pdf  
8 https://www.sesarju.eu/sites/default/files/documents/sid/2019/papers/SIDs_2019_paper_37.pdf  
9 https://www.sciencedirect.com/science/article/abs/pii/S0191261518310464  
10 https://www.sesarju.eu/sites/default/files/documents/sid/2020/papers/SIDs_2020_paper_26red.pdf  
11 https://www.sciencedirect.com/science/article/abs/pii/S0191261518310464  
12https://www.researchgate.net/publication/348717571_Toward_ATM_resiliency_A_Deep_CNN_to_predict_number_of_delayed_flights_and_ATFM

_delay  
13 https://www.sesarju.eu/projects/aichain  
14 https://cordis.europa.eu/project/id/783206  
15  https://cordis.europa.eu/project/id/783222/reporting  

https://www.sesarju.eu/sesar-solutions/management-dynamic-airspace-configurations
https://www.sesarju.eu/sites/default/files/documents/sid/2019/papers/SIDs_2019_paper_36.pdf
https://www.sesarju.eu/sites/default/files/documents/sid/2019/papers/SIDs_2019_paper_37.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0191261518310464
https://www.sesarju.eu/sites/default/files/documents/sid/2020/papers/SIDs_2020_paper_26red.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0191261518310464
https://www.researchgate.net/publication/348717571_Toward_ATM_resiliency_A_Deep_CNN_to_predict_number_of_delayed_flights_and_ATFM_delay
https://www.researchgate.net/publication/348717571_Toward_ATM_resiliency_A_Deep_CNN_to_predict_number_of_delayed_flights_and_ATFM_delay
https://www.sesarju.eu/projects/aichain
https://cordis.europa.eu/project/id/783206
https://cordis.europa.eu/project/id/783222/reporting
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11 GNSS navigation threats 
management - GATEMAN 

2018-2019 Support Vector Machine 
(SVM) and Convolutional 
Neural Network (CNN) 

16 

12 Advanced prediction 
models for flexible 
trajectory-based 
operations - ADAPT 

2018-2019 ad-hoc visualisation tool for 
the strategic flight planning 
 

17 

13 Airspace User supporting 
Demonstrations of 
Integrated Airport 
Operations- AUDIO 

2019-2021 Human Machine Interface 
(HMI), Augmented Tower 
Vision (ATV)  
 
 

18 

14 Enhanced situational 
awareness through video 
integration with ADS-B 
surveillance infrastructure 
on airports ENVISION 

2018-2019 Convolutional Neural 
Network (CNN) 

19 

15 Modern ATM via 
Human/Automation 
Learning Optimisation 
(MAHALO) 

2020-2022 explainability (transparency) 
methods, potential model is 
CNN 

20 

16 From Prediction to 
Decision Support - 
Strengthening Safe and 
Scalable ATM Services 
through Automated Risk 
Analytics based on 
Operational Data from 
Aviation Stakeholders 
(SafeOPS) 

2021-2022 Not found (Project has just 
started) 

21 

17 AI Situational Awareness 
Foundation for Advancing 
Automation (AISA) 

2020-2022 Random Forest, Decision 
Tree  

22 

18 Airspace User supporting 
Demonstrations of 
Integrated Airport 
Operations 

2019-2021 Other Method 23 

19 Participatory Architectural 
Change Management in 
ATM Systems 

2016-2018 Other Method 24 

 

 
16 https://cordis.europa.eu/project/id/783183  
17 https://cordis.europa.eu/project/id/783264  
18 https://cordis.europa.eu/project/id/783161  
19 https://cordis.europa.eu/project/id/783270  
20 https://cordis.europa.eu/project/id/892970  
21 https://cordis.europa.eu/project/id/892919  
22 https://cordis.europa.eu/project/id/892618  
23 https://cordis.europa.eu/project/id/783161  
24 https://cordis.europa.eu/project/id/699306  

https://cordis.europa.eu/project/id/783183
https://cordis.europa.eu/project/id/783264
https://cordis.europa.eu/project/id/783161
https://cordis.europa.eu/project/id/783270
https://cordis.europa.eu/project/id/892970
https://cordis.europa.eu/project/id/892919
https://cordis.europa.eu/project/id/892618
https://cordis.europa.eu/project/id/783161
https://cordis.europa.eu/project/id/699306
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20 COMPetition for AIR traffic 
management 

2016-2018 Other Method 25 

21 Resilient Synthetic Vision 
for Advanced Control 
Tower Air Navigation 
Service Provision 

2016-2018 Other Method 26 

22 Expecting the unexpected 
and know how to respond 

2015-2018 Other Method 27 

23 Advanced User-centric 
efficiency metRics for air 
traffic perfORmance 
Analytics 

2016-2018 Other Method 28 

24 Machine Learning of 
Speech Recognition 
Models for Controller 
Assistance 

2016-2018 Rule based model/ Assistant 
Based Speech Recognition 
(ABSR) model 

29 

25 Probabilistic Nowcasting of 
Winter Weather for 
Airports 

2016-2018 Other Method 30 

     

 
 

 

 
25 https://cordis.europa.eu/project/id/699249  
26 https://cordis.europa.eu/project/id/699370  
27 https://cordis.europa.eu/project/id/653289  
28 https://cordis.europa.eu/project/id/699340  
29 https://cordis.europa.eu/project/id/698824  
30 https://cordis.europa.eu/project/id/699221  

https://cordis.europa.eu/project/id/699249
https://cordis.europa.eu/project/id/699370
https://cordis.europa.eu/project/id/653289
https://cordis.europa.eu/project/id/699340
https://cordis.europa.eu/project/id/698824
https://cordis.europa.eu/project/id/699221


D3.1 REPORT ON STATE OF ART -AI SUPPORT IN ATM  

 

 17 
 

 

 

3 Transparency in AI algorithms in ATM 

AI is “blackbox” by nature in most of the applications. When it comes to ATM, it lacks transparency 
and explanation for an operator while taking a decision. An operator facing a problem in the ATM 
domain will find no guide or explanation on how to resolve problems.    
 
The goal of the following review is manyfold, and should provide an asset, both for operational, and 
different actors of this ARTIMATION project: 1) Provide a Design Space of the problem faced in ATM 
domain, and the solution provided—if any—by AI domain, 2) Assess the possibility to add explainability 
to the AI systems used in ATM, 3) Assess the need for explainability in those systems.  
 
The following three research questions (RQs) motivated this work, and directed the keywords of our 
methodology:  

  
RQ1: What are the AI/ML algorithms used in ATM domain?   
RQ2: What are the potential explainability methods in AI and ML?  
RQ3: How visualization techniques can be used for XAI in ATM domain?   
 

3.1 SotA on AI/ML algorithms in ATM 

This section seeks to answer the first research question (RQ1). It describes the methodology used to 
perform this review as well as the meta results, followed by explaining the categorization of the 
reviewed works, with the general results, and finally explaining the detailed results. 

 
The following review was performed by reviewing several papers from different conferences and 
journals mostly from the ICRAT conference31, ATM seminar event32 and the Transportation part C 
journal33.  

 

 
31 http://www.icrat.org/icrat/ 
32 http://www.atmseminar.org/ 
33 https://www.journals.elsevier.com/transportation-research-part-c-emerging-technologies 

http://www.icrat.org/icrat/
http://www.atmseminar.org/
https://www.journals.elsevier.com/transportation-research-part-c-emerging-technologies
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We followed a PRISMA Flow ( ) to perform this review, with a formal primary selection based on the 
title and abstract of the papers using primary keywords—listed below. Selected papers where then 
filtered based on the full text with a superficial reading based on an empirical keyword list containing 
mostly primary keywords and methods employed. Afterwards, filtered papers were fully reviewed.  
 
Based on the RQ 1, and the fact that this review was mostly performed on ATM conferences, our 
primary keywords were the following—i.e., the list does not have to include any keywords to restrain 
to the ATM domain: 
 

• Predict* 

• Estimat* 

• Optimi* 

• Cluster* 

• Analys* 

• Visu* 

• Explain* 

Because our review was primarily focused on ATM conferences, the papers selected in the 
Identification stage (n=226) were already consistent with the ATM field and needed to be consistent 
with the AI field. Hence exclusion was mostly because they did not use AI techniques. When it was 
detected at the screening phase (n=94) which was roughly 40 percent, they were excluded. Because 
techniques employed as clearly defined in the title/abstract, were not from the AI field. When it was 
detected at the eligibility phase (n=48), it became around 36 percent. As a result, the exclusion, 
compared to a systematic review, was low which was around 37 percent.  
 
The following section describes the result of this review, from most general to the most specific 
assessments. 
 

Figure 2 . PRISMA Flow of the AI in ATM review 
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From our review as presented in Figure 3, AI in ATM can globally be divided in 4 sub-groups, strongly 
connected with AI in general, that globally defines the purpose of the application:  
 

• Prediction, e.g., prediction of the traffic, prediction of the runway occupancy time. 

• Optimization/Automation, e.g., sequencing arrival airplane, avoiding conflict, optimizing a 

trajectory. 

• Analysis, e.g., assessing the workload of an Air Traffic Controller (ATCo) in a sector, evaluating 

the important factor influencing the arrival of an airplane. 

• Modelling/ Simulation, e.g., simulating the air traffic of an airspace, modelling the arrival of 

airplane. 

 

Figure 3. AI for ATM design space 

 
Note that, this categorization is not to be confused with any time frame of ATM, like the simplified pre-
tactical, tactical and post analysis time frame. Since, for example, one may predict the arrival time of 
airplane before the airplane departure, or after, and likewise, assessing the workload of a controller in 
each sector, one can be useful before, during, and after the trajectories have been flown. The 
categorization rather emphasizes the goal required by the operator e.g., predict the trajectory and 
how it can be achieved. Additionally, those groups are not strongly separated, since the output of one 
group can be used as an input by another group, and some are ambivalent. As an example, the output 
features of an AI algorithm used to cluster air traffic flows can be used to predict the arrival time by 
another algorithm. Similarly, an AI algorithm, that can predict 4D trajectories, can also be used as an 
input to another algorithm, or to model the traffic. In a sense, the more the AI model embrace the 
innate complexity of the ATM domain, the more it can perform. This categorization is used in the 
following to present this review of AI in ATM as presented in Figure 4.  
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Figure 4. AI in ATM analysis 

 
General insights 
Despite the narrow scope of our review, some insights about the evolution of publications of AI in ATM 
can already be drawn. From a global point of view, AI in ATM is a growing domain: the number of 
publications of AI in ATM as shown in Figure 3 has doubled in the last four years. This maturity of AI 
technologies applied to ATM, also emphasize the need of explainability of those systems to be 
accepted and used by the end users i.e., ATM operators, and the purpose of the ARTIMATION project.  

 

Through the lens of our categorization, the growth of the last four years publications seems to originate 
from the growing work in prediction and optimization—publications about prediction tripled between 

Figure 5: Evolution of the number of publications of AI for ATM from our review; left graph shows the 

evolution of the categories with years, right shows the most relevant years due to our review being primary 

made on ICRAT—that occurs every two years—between 2020-2014 
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2014 and 2020. From the number of publications, it seems that AI in ATM highly benefit from the AI 
community work, researcher work or developer community of the last decade, that democratize and 
made AI model generation far more accessible, e.g., scikit, TensorFlow, keras. In some area, its more 
effective like particularly in prediction and optimization. The time window of the review is too short to 
assess any previous trend in AI for ATM. However, previous work and other reviews [57] suggest that 
publications of AI in ATM have grown in the last decade but had a strong core base for many years, in 
particular in optimization, collision avoidance and traffic flows being arguably one of the most 
consistent subjects of AI in ATM. 
 
AI model used in ATM can vastly be categorized in function i) the primary goal of the model, i.e., is it 
to predict, analyse, model, or optimize, and ii) the object associated with this primary goal, e.g., to 
predict a trajectory, to predict the departure time, to model arrivals. The following describe the 
different categories and object associated. 
 
Categorization insights 
The primary goal of the model already categorize well enough the different AI models used in ATM. 
The different models used in the different categories is presented in Table 2, using selected references. 
 
AI prediction in ATM is performed using a vast range of AI model, most used ones are i) Multi-Agent 
Systems (MAS), ii) Neural Network (NN), iii) Random Forest (RF), iv) Gradient Boosting Machine (GBM), 
v) Support Vector Machine (SVM), and vi) Linear Regression. The five later models—NN, RF, GBM, SVM 
and linear regression are mostly used to predict i) an indicator of the trajectory of an aircraft, e.g., 
mass estimation [58], descent length [59], phase of flight [60], ii) a state indicator of an airport, e.g., 
the estimated take-off time [14], or taxi speed [61]. Authors using these models are mostly capitalizing 
on framework availability of the past years and often uses them jointly to compare them, using often 
linear regression as a baseline. Nonetheless, ii)-v) AI models have also been used for other type of 
predictions such as route choice [62], sector configuration [63], controller action prediction [64], or 
short-term 4D trajectory prediction [65]. Multi-Agent Systems on their side has been used to model 
and predict more complex tasks, such as delay propagation on networks [24], or 4D trajectory and to 
a certain extend traffic prediction [66]. Predicting the traffic and its delays is one key element to 
enhance the general traffic, its congestion, and better balance the demand and the resources. In this 
sense, fully understanding the underlining reasons of congestion, trajectory routes, and delay is more 
than required to better enhance latter traffic. Giving the fact that the different used algorithms have 
been a focus of the XAI community as mentioned in section 3.2, this category both can have 
explainability and requires it. 
 
AI optimization and automation works use mostly a more restricted range of AI model, i) Multi-Agent 
Systems (MAS), ii) Evolutionary Algorithm (EA), mostly genetic algorithms, and iii) Simulated Annealing 
(SA). Majority of these works focus on optimizing the traffic and/or avoiding collisions, from the point 
of view of the trajectories. Traffic optimization works focus in general on one flight phase, such as 
optimizing En-Route traffic using centralized, i.e., SA [42] or EA [37], or decentralized, i.e., MAS [67], 
[68], arrival [69], departure [70], ground optimization, or the whole airport traffic [71]. Notable other 
focus of AI model for optimization are optimizing airspace structure, such as route network [72], 
sectors [73], and optimizing a trajectory [74]. Optimizing the general traffic and avoiding collision is 
the most important thing to enhance the general traffic and its safety. Due to the utmost importance 
of the safety in ATM, fully understanding the underlying reasons of conflict avoidance procedures, 
sequencing, or any other optimization result, is required to be accepted and used by human operators 
such as ATCo. The different algorithms used have been a bit neglected by the XAI community as seen 
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in section 3.2. Hence, adding explainability could require more time and efforts, but it is of the utmost 
importance to add it to this category. 
 
Analysis of ATM activities using AI model is mostly composed of i) techniques that clusterize e.g., 
DBSCAN, BIRCH, or auto-encoder NN—trajectories in order to analyse the different factor influencing 
such as route choice [75], arrival [76], or delays [77] in order to understand the different influencing 
factors and/or as a first analysis to latter predict, or ii) more precise analysis, such as trajectory analysis 
to detect ATCos actions [78], or speech recognition and analysis or utterance of ATCos [79]. Adding 
explainability could be interesting, and direct with certain methods like auto-encoder NN in particular, 
but explainability seems less required in this category. 
 
AI modelling in ATM is mostly performed using multi-agent systems, which is unsurprising, considering 
their importance in simulation in many domains, such as the simulation of car traffic. Nonetheless, AI 
modelling is not that prevalent in ATM compared to other domains since in ATM, modelling and 
simulation are mostly made using records, and mathematical models [80] e.g., BADA [81], ASTOR. 
Multi-Agent modelling is quite broad, stretching from modelling aircraft arrival to assess risks in TMA 
[82], simulate network delay [24], simulation of air traffic [83], or simulate the all ATM environment 
[84]. Other AI models found focused on more simple tasks, such as modelling go-around pilot decision 
[85], with neural network (NN). Latest work on graph neural network [86] could possibly become 
important in modelling in the future, such has modelling an ATCOs [87]. In a sense, AI modelling most 
of the time start from the underlying reasons motivating actions of the different actors taking part in 
the simulated world. This is particularly true with MAS systems that are dominant in this category, 
where MAS designers try to represent the different entities in the system, their actions and reasoning, 
and they let emerge global state for the agent interactions. Explainability could be added to explain 
some emerging behaviours i.e., delay propagation, and have a valuable impact to the global 
understanding. Nonetheless, in general, explainability is less required in this category and is already 
provided to a certain extend.   

 
Table 2. Different AI algorithms/models used in the different categories in ATM 

Category  Prediction Optimization 
/ Automation 

Analysis Modelization 
/ Simulation 

Multi-Agent System (MAS) 

[88] [89] [66] 
[83] [90] [91] 
[92] 

[72] [68] [80] 
[93] [94] [95] 
[96] [97] 

[98] [66] [80] [82] 
[99] [100] 
[101] [66] [83] 
[90] [89] [91] 
[92] [84] 

Metaheuristics 

Evolutionary 
Algorithm (EA) 

[102]  [103] [104] 
[105] [106] 
[107] [108] 
[73] [109] 
[110] 

  

Simulated 
Annealing (SA) 

 [111] [112] 
[113] [74] [69] 
[71] [70] [110] 

  

Ant Colony 
Optimization 
algorithm(ACO) 

 [114]   
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Neural 
Network 

Neural Network 
(NN) 

[115] [58] [59] 
[116] [63] 
[117] [118] 
[60] [119] [85] 
[120] 

[121] [87]  [85] [78] 
[76] [79] 

[85] [87] 

Deep 
Deterministic 
Policy Gradient 
(DDPG) 

 [122]   

Deep Q-
Network (DQN) 

 [123]   

Tree-based 

Random Forest 
(RF) 

[61] [124] 
[125] [126] 
[127] [65] [62] 
[128] [129] 
[64] [130] 

   

Quantile 
Regression 
Forest 

[125] [126]    

Gradient 
Boosting 
Machine (GBM) 

[59] [116] 
[124] [127] 
[62]  [131] 
[128] [129] 

   

Decision Trees [124] [129]    

Support Vector Machine (SVM) 
[102] [60] [62] 
[128] 

[121]   

Fuzzy Logic [132]    

Regression 

Linear 
Regression 

[59] [117] [60] 
[62] [75] [133] 

[121] [134] [75] 
[135]  [136] 
[137] 

[133] 

Binary logistic 
regression 
models 

  [138]  

Bayesian 

Bayesian 
Network 

[139]    

Recursive 
Bayesian 
Estimation 

[140] [141]   

Dynamic 
Bayesian Belief 
Network 

[142]   [142] 

Clustering 

BIRCH   [132]  

DBSCAN   [132]  

OPTIC   [77]  
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Gaussian 
Mixture Model 

[143]    

Non Negative Matrix 
Factorization (NMF) 

  [144]  

A*  [105]   

Not referenced  [145]   
 
Below different categories of AI/ML algorithms are listed with a generic overview, motivation, and 
connection with the sub-four tasks i.e., Prediction, Optimization/Automation, Analysis and 
Modelization/Simulation: 
 
Multi-Agent System (MAS): There are many definitions of the term agent as well as many paradigms 
using it. A commonly accepted definition of an agent is that it is "an autonomous physical or virtual 
entity able to act (or communicate) in a given environment given local perceptions and partial 
knowledge. An agent acts in order to reach a local objective given its local competence" [146]. In a 
nutshell, a MAS is a system composed of various agents interacting between themselves and their 
environment.  
 
The paradigm being inherently decentralized, and focused on the different entities composing a 
system, for example the airplanes, it is highly appreciated in the simulation community in many 
domains—car traffic for example—, and can be found in air traffic simulation as well, even if it is in the 
minority among all the simulation works in this domain, for air traffic simulation [66] [80] [90] [83] [66] 
[100] [101],  delay propagation simulation [89] [91] [92], arrivals [82] [99] ,or the whole ATM 
environment [84].  

 
Interestingly, even if the MAS are first created to simulate objects—e.g., airplanes composing the air 
traffic—, the more accurate the behaviours of the different actors of the simulation is, the more the 
MAS simulated traffic can be used to predict the future state of the simulated objects—e.g., the air 

Figure 6. A MAS optimizing the traffic by letting airplanes agents (MEAi) decide of the trajectory 

of the airplane i, by choosing, according to the perceived environment—mostly neighbours 

airplane—, an action  it can perform [97]. 
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traffic—if inputted with real data like traffic prediction [66], delay prediction [89], or meteorological 
indicators [88].  
 
On another note, MAS can also be used to solve complex problem in a decentralized way, in ATM it 
has particularly been to optimize En-Route air traffic [97] [68] [94] [95] [96], the capacity/demand 
balance [93], or the  route network [72].  
 
The strengths of MAS lie in the natural decomposition of the problem that comes with its use—e.g., 
optimizing the traffic is the result of the interactions of airplane optimizing their trajectories—and a 
more understandable global result—e.g, the trajectories in previous example—, since it results of 
understandable entities and their understandable behaviour that can be traced and understood 
easily.  
 

Metaheuristics: Metaheuristics can be defined as “high level concepts for exploring search spaces by 
using different strategies. These strategies should be chosen in such a way that a dynamic balance is 
given between the exploitation of the accumulated search experience (which is commonly called 
intensification) and the exploration of the search space (which is commonly called diversification)” 
[147]. Metaheuristics is a category of algorithm containing lots of different type of algorithm, 
presented in figure 7. In this state of the art, three categories have been found: 

• Genetic Algorithms (GA) 

• Simulated Annealing (SA) 

• Ant Colony Optimization algorithm (ACO) 
Most of the applications of these categories are made to optimize the traffic and/or avoid conflicts, 
most of the time only in one flight phase, such as optimizing En-Route trajectories with SA [42] or EA 
[37], but also optimizing arrivals [69], departure [70], ground optimization, or the whole airport traffic 
[71]. Those algorithm can also be used to optimize the airspace structure, like sectors [73], or optimize 
a trajectory [74]. 
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Neural Network: A neural network (NN) is a system designed to act like a human brain. It’s simple but 
prevalent in our day-to-day lives.  A complex definition would be that a NN is a computational model 
that has a network architecture. This architecture is made up of artificial neurons. This structure has 
specific parameters through which one can modify it for performing certain tasks. They have extensive 
approximation properties. This means they can approximate a function to any level of accuracy 
irrespective of its dimension. NN find extensive applications in areas where traditional computers don’t 
fare too well. From Siri to Google Maps, neural networks are present in every place where Artificial 
Intelligence is used. They are a vital part of artificial intelligence operations. NN take inspiration from 
the human brain and so their structure is like one as well. A NN has many layers. Each layer performs 
a specific function, and the complex the network is, the more the layers are. That’s why a neural 
network is also called a multi-layer perceptron. The simple form of a neural network has three layers: 
input layer, hidden layer, and output layer. As the names suggest, each of these layers has a specific 
purpose. These layers are made up of nodes. There can be multiple hidden layers in a neural network 
according to the requirements. The input layer picks up the input signals and transfers them to the 
next layer. It gathers the data from the outside world. The hidden layer performs all the back-end tasks 
of calculation. A network can even have zero hidden layers. However, a NN has at least one hidden 
layer. The output layer transmits the result of the hidden layer’s calculation.  Like other machine 
learning applications, you will have to train a neural network with some training data as well before 
you provide it with a particular problem. NN consisting of many hidden layers called Deep learning. 
There are several Deep-learning architectures such as deep neural networks, deep belief networks, 
deep reinforcement learning, recurrent neural networks, and convolutional neural networks. 

Figure 7. Euler diagram of the different classifications of metaheuristics, Johann Dréo 

via Wikimedia Commons 
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Considering ATM domain, literature show that NN has been deployed in many tasks such as prediction, 
optimization, analysis and simulation. Several ATM tasks related to prediction such as runway 
configuration prediction [115], aircraft climb prediction [58], predicting aircraft descent length [59], 
aircraft phase of flight prediction [60], take -off time prediction [116] and [117], predicting sector 
configuration transitions [63],  airport capacity prediction [119], predictive modelling for decision 
making [85], prediction of the propagation of trajectory uncertainty [120] have been conducted using 
NN. Again, other ATM task such as optimization tasks for aircraft landing [121] and free air-space [87], 
analysis tasks such as pilot decision making [85], controller action [78], trajectory clustering [76], 
context-aware speech recognition and understanding system for air traffic control [79] and simulation 
tasks [87] have been performed where NN has been deployed. Deep learning NN such as Deep 
Deterministic Policy Gradient (DDPG) model [122] for conflict detection, and Deep Q-Network (DQN) 
[123] for aircraft sequencing and separation have been developed.  

Tree-based Models: Mostly Random Forest (RF) is witnessed to be used in various task related to ATM. 
RF is one of the ensemble methods for supervised learning, which is developed with several binary 
decision trees, thus it is called forest. Here, the target value is predicted based on the results from 
several distinct trees. During the classification or regression, the decision is made at each level of the 
trees depending on the values of different features. For the two different tasks, i.e., classification and 
prediction, the outcome of the model is determined through voting or averaging the individual 
outcome of the trees respectively. Generally, randomized bootstrapping process is followed while 
training a RF classifier/regressor. Here, the training set is sampled several times depending on the 
predefined number of trees in the forest. All the samples contain same number of instances and 
chosen randomly. Since, the process is performed by replacing the samples time and again, the effect 
of duplicate and missing records persists. After generating the sample sets, decision trees are built for 
each of the samples. A tree is grown by an iterative splitting of the data sample into two parts based 
on a decision criterion that gives the reduction in variance to determine the quality of a split [125]. The 
Quantile Regression Forest (QRF) trains in a similar way of training a RF except the handling of values 
at the leaves of the distinct trees. In a classical RF regression model, the average of all the values from 
the leaves are stored. On the contrary, in QRF, all the observations are preserved. During the prediction 
phase, individual weights are utilised to generate quantile function that generates the final prediction. 
 
Gradient Boosting Machine (GBM): GBM is a boosting algorithm that ensembles new predictors with 
a view to correct its predecessor models. Generally, GBM tries to fit in new predictors built on the 
residual errors from the previously built predictors. The ultimate concept behind this model is to build 
a strong model from an ensemble of several weak models. There main advantages of GBM is increased 
performance accuracy reducing bias and variance with less number of trees than other tree-based 
models like RF. On the contrary, GBM is prone to overfitting and cannot run in parallel like RF or QRF 
which can be considered as the limitations of GBM [148]. From the literature, it was observed that, the 
tree-based models are mostly used in prediction tasks from the ATM domain as described in Table 2. 
 
Support Vector Machine (SVM): SVM is a supervised machine learning algorithm commonly used in 
pattern recognition, which can be used for solving both classification and regression problems. The 
goal of the SVM algorithm is to find a hyperplane in an N-dimensional feature space that minimizes 
the empirical classification error and maximizes the geometric margin in the classification. The data 
points that maximize the margin are called support vectors. Support vectors lie closer to the 
hyperplane, influence the orientation and position of the hyperplane. The advantage of using SVM is 
that it can map the original data points from the input space to a high dimensional feature space so 
that the classification problem becomes simple in this feature space. Besides, SVM is effective for 
training a model with high dimensional features and memory-efficient since a subset of training points, 
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i.e., support vectors, are used in decision making. Also, SVM can be versatile as it can use different 
kernel (similarity) functions for the decision function. 
 
In the ATM domain, SVM primarily used in prediction tasks such as trajectory prediction [60] [62] [128] 
and fuel consumption prediction [102].  Although SVM has been proven to be a good algorithm in 
pattern recognition, however, based on the results of [60] [62] [128], SVM has not been found as the 
best performing algorithm in trajectory prediction. On the other hand, support vector regressors could 
quickly and accurately estimate the cheapest-sequence cost for fuel consumption prediction [102].  
 
Fuzzy Logic: Fuzzy logic is basically used to handle uncertainty based on the fuzzy set’s theory. This is 
used to illustrate a real-world concepts where no precise definition of criteria for membership 
exist  [132]. The membership functions are applied to define the degree of truth of features. And the 
logic operators e.g., AND, OR, NOT are applied as minimum, maximum, and complement operation. 
The basic steps in fuzzy inference system are a) crisp value as input, b) crisp values are converted into 
fuzzy membership functions, c) fuzzy rules-rules evaluation-aggregation, d) defuzzification. The 
authors in [132], applied fuzzy logic beside other machine learning algorithms to identify flight phase 
in aircraft performance models. Here, other machine learning models such as clustering methods are 
used to create sub-clusters, but they cannot handle the certain level of consistency and failed to cluster 
when there is a flight behavior variance.  To solve the issue three input membership are considered 
i.e., altitude (low, ground, high), rate of climb (zero, positive, negative) and ground speed (high, 
medium, low) and one output membership function to determine phase (ground, climb, descend, 
cruise). They have considered four fuzzy rules as [132]: 
 

1. If Altitude is ground and Speed is low, then Phase is ground 
2. If Altitude is low and Speed is medium, and Rate-of-climb is positive then Phase is climb 
3. If Altitude is high and Speed is high, and Rate-of-climb is zero then Phase is cruise 
4. If Altitude is low and Speed is medium, and Rate-of-climb is negative then Phase is 

descended 
 
Regression: Regression analysis is a fundamental concept in the field of machine learning. It falls under 
supervised learning wherein the algorithm is trained with both input features and output labels. It 
helps in establishing a relationship among the variables by estimating how one variable affects the 
other.  Regression in machine learning consists of mathematical methods that allow data scientists to 
predict a continuous outcome (y) based on the value of one or more predictor variables (x). There is 
different regression model such as linear regression, logistic regression etc. Linear regression is 
probably the most popular form of regression analysis because of its ease-of-use in predicting and 
forecasting.  
 
Linear regression finds the linear relationship between the dependent variable and one or more 
independent variables using a best-fit straight line. Generally, a linear model makes a prediction by 
simply computing a weighted sum of the input features, plus a constant called the bias term (also called 
the intercept term). In this technique, the dependent variable is continuous, the independent 
variable(s) can be continuous or discrete, and the nature of the regression line is linear. Logistic 
regression on the other hand, is named for the function used at the core of the method, the logistic 
function. The logistic function, also called the sigmoid function was developed by statisticians to 
describe properties of population growth in ecology, rising quickly and maxing out at the carrying 
capacity of the environment. It’s an S-shaped curve that can take any real-valued number and map it 
into a value between 0 and 1, but never exactly at those limits.  



D3.1 REPORT ON STATE OF ART -AI SUPPORT IN ATM  

 

 29 
 

 

 

linear regression is used mostly for prediction and analysis related ATM tasks. A number of prediction 
tasks such as predicting aircraft descent length  [59], predicting the time to fly and aircraft speed profile 
on final approach [117], aircraft phase of flight prediction [60], predicting aircraft trajectory choice 
[62],  route choice prediction [75], prediction model for for aircraft performances [133] etc. have been 
conducted using linear regression model. Also analysis tasks such as identification of significant impact 
factors on arrival flight efficiency [134], capacity estimation and robustness analysis [135],  maximum 
flow estimation [136] etc. have been exploited using linear regression model. Again logistic regression 
model such as binary logistic regression model has been deployed for analysis of airspace 
infringements [138].  
 
Bayesian: Our observations and understanding of the world are limited, and we often need to consider 
the uncertainty to deal with our imperfect knowledge of the world. Probabilistic models play a vital 
role in machine learning, which explicitly consider the uncertainty of the real world and can act as a 
kind of expert system. In machine learning, probabilistic models are generated by Bayesian reasoning 
that includes Bayesian estimation and Bayesian Belief Networks. Bayes estimator is a decision rule that 
minimizes the posterior expected value of a loss function. The general design of Bayesian inference 
using Bayesian estimation works as follows: initial a prior probability is guess based on the observable 
data. Then successively Bayes rule is applied to update the initial guess and measurement of the 
observable. The updated distribution obtained this way is known as the posterior [139] [140]. Bayesian 
Networks (BN) or Bayesian Belief Networks (BBN) are generative models. BN or BBN is a probabilistic 
graphical model representing the conditional dependencies of a set of random variables using a 
Directed Acyclic Graph (DAG). For a set of inputs 𝑋, and output 𝑌, BN's learns the joint distribution 
𝑃(𝑋,𝑌), whereas other machine learning algorithms such as SVM models the conditional distribution 
𝑃(𝑌|𝑋). In the ATM domain, Bayesian Networks and Bayesian estimation mainly applied for predict 
e.g., predicting future location in [139] and ATM Network Delays [142]. It is hard to design the Bayesian 
Networks and difficult to learn the joint distribution, however, BN's is effective when we have a lot of 
missing data. Since it is a graphical representation, BNs are visually transparent and can help to capture 
the cause-effect relationship. 
 
Clustering Algorithms: Several clustering algorithms are prominent in the literature which were 
deployed in different tasks in ATM domain. Mostly, in analysis-based tasks clustering algorithms, e.g., 
BIRCH [132], DBSCAN [132] and OPTIC [77] were used. DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) is a clustering method that distinguishes data into clusters based on area of 
high and low density. It uses two fundamental parameters, namely, Eps and MinPts. Here, the 
maximum distance between two data points in the same neighbourhood is expressed with Eps and the 
number of data points in the neighbourhood of a core point is presented with MinPts. The prime 
advantage of DBSCAN is that it can eliminate noise by considering the data points from low density 
area and performs well with large datasets containing higher number of clusters. Another clustering 
algorithm BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) incrementally 
constructs a Characteristic Feature (CF) tree from the dataset. In the construction of the CF, BIRCH 
utilises two user-defined constraints - the threshold (T) and the branching factor (B). Finally, the leave 
nodes of the CF are clustered with an arbitrary clustering algorithm. Both clustering algorithms are 
proved to be superior in terms of handling outliers and large diverse datasets than other simpler 
clustering algorithms like K-means [132]. 
 
Non-negative Matrix Factorization (NMF): Non-negative Matrix Factorization (NMF), can be defined 
as methods or algorithms in multivariate analysis and linear algebra where a matrix is factorized into 
(usually) two matrices, with the property that all three matrices have no negative elements [149]. NMF 
can be used for dimensionality reduction and data analysis. NMF is particularly relevant when non-

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Multivariate_analysis
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_decomposition


D3.1 REPORT ON STATE OF ART -AI SUPPORT IN ATM  

 

 30 
 

 

 

negativity is inherent to the data being considered, such as audio spectrograms, such as analysing 
speech utterance of controllers [144].  
 
A*: A* is a graph traversal and path search algorithm [150] that can easily be used to find shortest path 
on a route network that is used in ATM, and is used in particular by different simulators to find a first 
the shortest path for a city pairs before further optimizing it [105]. 

3.2 Overview on Explainability in AI/ML 

This section is dedicated to the second research question (RQ2). Prior to the overview of AI/ML and 
explainability, it is expedient to form a general understanding of the term explainability in the context 
of AI/ML. The prime hindrance towards developing the ground knowledge of explainability concerning 
AI, is the interchangeable use of several terms in the literature, such as, interpretability, transparency, 
explainability etc. Before proceeding to the literature review, the commonly used terms are presented 
briefly according to the definitions compiled by Barredo Arrieta et al. [151].  

 
Understandability, often termed as Intelligibility also, is the characteristics of a model that makes a 
user realise its functions. In other words, how the model works without any requirement of further 
explanation for the model’s internal operations on the data. Another similar term that has been used 
to define the ability of an ML model to represent its learned knowledge to humans in an 
understandable way is Comprehensibility. Clearly the prior terms differ on representing the internal 
operations on the data and the knowledge acquired from the data. In addition, the terms 
Interpretability and Transparency are mostly used in describing similar concepts to Explainability. In 
fact, interpretability refers to a model’s ability to provide meaning or explain in an understandable way 
to human beings. Nonetheless, transparency of a model indicate the ability to be understandable to 
humans, and there are three types of transparent models [152] - 

• Simulatable Models have the capacity to make humans understand their structure and 
functioning entirely. 

• Decomposable Models can be decomposed into individual components, i.e., input, parameters 
and output, and their respective intuitions. 

• Algorithmically Transparent Models behave “sensibly” in general with some degree of 
confidence. 

Above all, the term Explainability affiliates the interface between humans and decisionmakers, which 
is concurrently comprehensible to humans and accurate representation of the decision-maker [153]. 
In XAI, explainability is the interface between the models and the end-users through which an end-
user gets clarification on the decisions he/she gets from an AI/ML model. 

3.2.1 Stages, Scopes and Forms of Explainability  

The AI/ML models learn the underlying characteristics of the available data and subsequently try to 
classify, predict or cluster new data. The stage of explainability refers to the period in the process 
mentioned above when a model generates the explanation for the decision it provides. The stages are 
found to be ante-hoc and post-hoc [154]. Brief descriptions of the categorised methods based on these 
stages are : 
 

• Ante-hoc methods generally consider generating the explanation for the decision from the 
very beginning of the training on the data while aiming to achieve the optimal performance. 

https://en.wikipedia.org/wiki/Graph_traversal
https://en.wikipedia.org/wiki/Pathfinding
https://en.wikipedia.org/wiki/Algorithm
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Mostly, explanations are generated using these methods for transparent models, such as, 
Fuzzy models, Tree-based models etc. 

• Post-hoc methods comprise an external or surrogate model and the base model. The base 
models remain unchanged, and the external model mimics the base model’s behaviour to 
generate an explanation for the users. Generally, these methods are associated with the 
models of which the inference mechanism remains unknown to users, e.g. Support Vector 
Machines, Neural Networks etc. Moreover, the post-hoc methods are again divided into two 
categories - model-agnostic and model-specific. The model-agnostic methods are applicable 
to any AI/ML model, whereas the model-specific methods are confined to particular models. 

 
Scope of Explainability  
Scope of explainability defines the extent of an explanation produced by some explainable methods. 
Vilone and Longo deduced after scanning more than 200 scientific articles published on XAI that the 
scope of explainability can be either global or local [154]. The whole inferential technique of a model 
is made transparent or comprehensible to the user at global scope, for example, a decision tree. On 
the other hand, a single instance of inference is explicitly presented to the user in local scope, for 
decision trees, a single branch can be termed as a local explanation. 

 
Forms of Explanations  
Literature indicates that mostly four different forms of explanations are generated to explain the 
decisions of the AI/ML models as well as the process of deducing a decision. The forms of explanations 
are numeric, rules, textual and visual. The Figure 8 below illustrates the basic forms of explanations. In 
some of the previous researches, authors used these forms in a combined fashion to make the 
explanation more understandable and user friendly. All of the forms of explanation are discussed along 
with the references to key works with the corresponding forms in the subsequent sections. 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 8. Different forms of explanations. (a) numeric explanation from confidence itemsets [155], (b) visual 
explanation with class activation map (CAM) for vibrating cantilever beam by Sun et al. [156], (c) example of 

rule-based explanati on in the form of tree [157] and (d) explanation text generated with GRACE, proposed by 
Le et al. [158]. 

Long Term
Health Issues

No Falls
(0.62, 0.38)

Afraid of 
Falling

Blackout or 
Fainted

No Falls
(0.33, 0.67)

Fall
(0.89, 0.11)

Fall
(0.73, 0.27)

‘if there were nine more bare nucleus, the 

patient would be classified as malignant rather 

than benign.’ 

‘The message is classified as spam rather than 

spam because the word credit is used twice as 

frequent as that of spam message.’ 



D3.1 REPORT ON STATE OF ART -AI SUPPORT IN ATM  

 

 32 
 

 

 

3.2.2. Methods for Explainability  

The available methods for adding visual explainability to the existing and proposed AI/ML models are 
clustered based on two properties: i) stage of generating explanation and ii) scope of the explanation. 
Here visual explanations are prioritized because of its significant utilization in ATM. The summary of 
the clustering is represented in Table 3 where model-specific methods are cross-referred to the AI/ML 
model types. A good number of model-agnostic (MA) methods were also deployed to generate in the 
selected articles of this review, such as Anchors [159], Explain Like I’m Five (ELI5) [160], Local 
Interpretable Model-agnostic Explanations (LIME) [161], Model Agnostic Supervised Local 
Explanations (MAPLE) [162] etc. LIME was modified and proposed as SurvLIME by Kovalev et al. [163]. 
Afterwards, they incorporated well-known Kolmogorov-Smirnov bounds to SurvLIME and proposed 
SurvLIME-KS [164]. Authors also utilised feature importance to generate numeric explanations in 
several research works [165]–[168]. Shapley Additive Explanations (SHAP) was proposed by Lundberg 
and Lee [169], and later it was used by several authors to generate mixed explanations containing 
numbers, texts and visualisations [170], [171].  

 
Table 3. Methods for explainability for visual explanations with stage (Ah: Ante-hoc, Ph: Post-hoc), 

scope (L: local, G: global) of explainability, design spaces (P: Prediction, O/A: 
Optimisation/Automation, A: Analysis, M/S: Modelling/Simulation) and the type of AI/ML models 

used for performing the primary tasks. 
Method For 
Explainability 

AI/ML Model References Stage Scope Design Space 

Ah Ph L G P O/A A M/S 

Anchors Model Agnostic (MA) [159]  X X X X    

ANFIS Fuzzy Model (FM), Genetic 
Algorithm (GA), Neural 
Network (NN) 

[172]–[175]  X X X  X X  

ApparentFlow-net NN [176] X  X  X  X  

Attention Maps NN [177], [178]  X X  X    

BB-BC IT2FLS FM [179] X  X     X 

BN Bayesian Model (BM) [180] X  X    X  

CAM NN [156], [181]  X X  X   X 

Candlestick Plot NN [182]  X  X   X  

CIT2FS FM [183] X  X   X   

DeconvNet NN [184]  X X X X    

DTD NN [185]  X X    X  

ELI5 MA [160]  X X X   X  

Encoder-Decoder NN [186] X  X  X    

ExNN NN [187] X  X X X X   

FACE NN [188]  X X    X  

Feature Importance MA [165]–[168]  X X X X    

FINGRAM Tree-based Model (TM) [189] X  X  X  X  

FormuCaseViz Case-Based Reasoning (CBR) [190]  X X    X X 

GLAS MA [191]  X X  X    

Grad-CAM NN [175], [192], [193]   X X  X    

HFS FM [194] X  X X  X   

iNNvestigate NN [195]  X X X X    

Interpretable Filters NN [196]  X X    X  

KSL NN [197] X   X X    

LGNN NN [198] X   X X    

LIME MA [160], [199]–[201]  X X X X  X  
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Linear 
Interpretability 
Probes 

NN [202]  X X X X X   

LPS NN [203]  X  X   X  

LRP NN, Support Vector 
Machines (SVM) 

[204]  X X     X 

MAPLE MA [162]  X X X X    

MTDT TM [205] X   X X    

MWC, MWP NN [206]  X  X X   X 

Nilpotent Logic 
Operators 

NN [207] X  X X   X  

NMF Ensemble Model (EM) [196]  X X    X  

pGrad-CAM CBR [208]  X X  X    

Prescience MA [209]  X X  X X X  

PRVC CBR [210] X  X X  X  X 

RAVA MA [211] X   X  X  X 

RBIA CBR [212], [213]  X X X  X   

RetainVis NN [214]  X X X   X  

RuleMatrix MA [215]  X  X   X X 

SHAP MA [160], [169]–[171]  X X X X  X  

Shapelet Tweaking EM [216]  X X    X  

SRM Rule-based Model (RM) [217]   X X  X X X 

SurvLIME-KS MA [164]  X X X X  X  

Time-varying 
Neighbourhood 

NN [218]  X X     X 

TreeExplainer MA [169]  X X X X   X 

Tripartite Graph RM [219] X  X   X   

3.3 Overview and SotA on Visualization  

Lastly, this section tries to address the third research question (RQ3). Visualization technics in ATM can 
be divided in two big families: i) Information Visualization (InfoVis), and ii) Visual Aalytics (VA), 
visualization to analyse, in this context is the traffic. 
 
The first family in the following, regroup mostly all the work in ergonomics e.g., to seize how the 
colours influence the operators, assess the impact on the operator of the way information is displayed 
and mostly evaluate new ways to display information to Air Traffic Controllers (ATCos). 
 
The second family regroups methods that help in extracting and understanding information from data 
by visualizing it, either i) from a unique and static visualization perspectives e.g., with dimension 
reduction, new way to visualize the data and, ii) by combining the visualisation with interactions 
techniques. 

3.3.1 Visualization in ATM 

Visualization is heavily used in ATM, in ATC where it is a critical tool. As a result, lot of work will assess 
how any visualization or changes in the visualization might change the ATCo perception of the airspace, 
trajectory behaviour, or its results.   
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As an example, visualization works focus on i) the way airplane present and past positions are 
displayed, e.g. by representing past movements by means of symbols showing the last 5-8 aircraft 
positions called the comet [220], or the rate at which this comet is refreshed [221], [222] , ii) the way 
notifications are displayed and designed [223] , for example change in aircraft parameters [224],  iii) a 
visual support for conflict detection and resolution, for speed and heading [225], or for speed, heading, 
and altitude  [226]–[229]. 
 
Immersive environments are also used in this domain, like virtual or mixed representation of the strips 
used by the controllers [230], virtual reality to represent the ATCo radar view[231]  or, remote tower 
or related concepts [232]–[234].  
 
This family stays at the edge of our interest for the ARTIMATION project. While we will keep in mind 
the different available visualizations, we will not review it more than this small presentation. The 
following section presents visual analytics techniques applied to ATM. 

3.3.2 Visual Analytics in ATM 

Thomas and Cook in [235] defines visual analytics (VA) as “the science of analytical reasoning facilitated 
by interactive visual interfaces. People use visual analytics tools and techniques to synthesize 
information and derive insight from massive, dynamic, ambiguous, and often conflicting data; detect 
the expected and discover the unexpected; provide timely, defensible, and understandable 
assessments; and communicate assessment effectively for action”. This definition clearly emphasize 
on how visual analytics as a domain seems appropriate to be applied to explain artificial intelligence, 
in particular machine learning that generates lot of data, from the data set used to learn, to the result 
given by the system, passing by how the model it works internally.   
 
In ATM, different VA methods have been used. Most of them focused on the visualization and the 
analysis of the trajectories and can be separated in two sub-categories: i) methods that try to represent 
all the data in a unique and static visualization, mostly by aggregating trajectories, and ii) methods that 
combine visualization and interaction to analysis the data. Nevertheless, both categories can be used 
jointly to explore the dataset and completement themselves. Additionally, both categories present 
methods using classical visualisation or interaction tools e.g., WIMP techniques (windows, icon, 
mouse, pointers) and methods using newest tools e.g., immersive environment or virtual reality. 

 
‘Static’ Visual Analytic 
Naive representations of the aircraft trajectory data rapidly suffer from cluttering, and providing 
unique static visualization of the trajectories may help the end user e.g.,  ATCos to understand different 
aspect of the traffic, like indicators e.g., extraction and representation of wind data [236]  which may 
provide important information to him, or more general view of traffic partly or fully.  
 
Among the general view of the traffic, aggregation of aircraft trajectories is widely represented and 
provide interesting insights about the traffic and its patterns [237]–[239] , like flight corridors and their 
usages in function of the circumstances e.g., weather conditions and supports measure for identifying 
air traffic complexity [240]. In particular, density maps have been well used to analysis aircraft 
trajectories, to simply summarise the traffic in an areas [241], [242] , potentially with detail and 
overview technics [237], [239], [243], eventually combined with other metrics such as conflict 
probabilities [244]. As an example, in [241], authors used density maps to aggregate flight direction of 
airplanes, density of airplanes, and more generally analyse local air traffic impact regarding noise, and 
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violations of air traffic regulations. Temporal bundling of the trajectories i.e., bundling evolving with 
time, statical with different view of different time windows, or dynamically evolving with time for the 
visualization of trajectories have also been widely used on different large datasets [245] [246], [247]. 
This aggregation technique can also successfully add additional attributes while bundling the data, like 
the direction of the aircraft or time—hence not separating time windows— enhancing its value for 
ATCOs [248]. Aggregating trajectories based on their functional decomposition-–i.e., the 
decomposition of the trajectory with functions—has also proven to be effective with bundling [249]. 
In general, bundling and aggregation have proven to be effective to give insights about the traffic and 
will surely be used to explain decisions of AI systems on trajectories. 

 

 
Figure 9: Trajectory Bundling with time window of a day of traffic in the USA Airspace [245] 

Combining both aggregation and particle systems by using animations to visualize the direction of the 
movement provide a good trade-off between the aggregation and the representation of the complete 
dataset [250] [246], benefiting from the general overview, and keeping an aggregated information. 

 
Interactive Visual Analytics 
Interacting with the dataset through visualization is also a reliable way to explore and analyse data. It 
implies using techniques to encode e.g., labelling, colouring, select, annotate, and/or arrange the data 
in order to extract insights from the visualization. As an example, brushing, visual selection, and linking 
i.e., display the selected data in another view are effective ways to explore large number of trajectories 
[251]. The previous selection can be enhanced by adding new constraints to the selected data, such as 
direction range to better filter it, and can also be annotated to be compared with other annotated sub 

                         (a)  (b) 
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dataset [250]. Filtering can be performed using uniquely the trajectory data e.g., filtering trajectory by 
date [237], [238], [252], or associated with regulation rules [253]. 

Figure 10: (a) Brushing+Linking of trajectory data from [251], (b) Boolean addition of different filters, 
annotation and comparison from [250] 

Finally, interaction and aggregation can also provide a powerful way to analyse aircraft trajectories. 
Density-based and graph-based techniques, as well as edge-bundling, have been combined with 
brushing+linking techniques [252], filtering [237], [238], and more complex interactive framework 
using analytical procedure for pairwise comparison of trajectories [242], [254]. Generally, aggregation 
allows to seize a general idea of the dataset, while interaction techniques allow to seize the nuances, 
and enhance the mind map one had of the dataset. Combining aggregation, filtering, brushing+linking 
technics have been quite effective to extract information from data and will surely be used to explain 
decision and process of AI systems on trajectories.  

 
Immersive Visual Analytics 
Virtual reality is also an interesting tool to visualise of aircraft trajectories, and corresponding data, 
such as weather information [255] e.g., wind speed, wind direction. Previously seen visualisation and 
interactions can benefit from Virtual Reality (VR), with the depth dimension, such as brushing and 
linking [256], filtering using 3D shapes [257], and combining interactions with reactive aggregation to 
explore statistical data of trajectories [258]. 
 
Nonetheless, Immersive analytics is not widely used in ATM, despite its promising uses in different 
domains [259], combining VR with touch input surfaces to support the analysis of medical images, 
analyse badminton trajectory data by combining VR brushing with a display of statistical data and using 
VR controller to support immersive filtering—using virtual stroke to select trajectories—, or 
hierarchical brushing+linking in augmented reality [260]. Further exploration of Immersive Visual 
Analytics to analysis trajectory data and explain AI decisions is very promising. 

Figure 11. Immersive Visual Analytics tool: Fiber Clay [256] 
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4 Human-centered AI 

Today’s technologies are being developed with human centric. The purpose is to keep human in the 
loop. Now, humans can be integrated or kept in the loop in two ways. Lifelong Machine Learning (LML) 
and Human-centered AI.  

4.1 Lifelong Machine Learning 

The current trend of using ML is to train an ML model on a given dataset and then run that model for 
tasks like prediction, classification or clustering on a new dataset. If it requires updating the model 
with a new dataset, then the whole ML training process needs to carry out again. This paradigm is 
referred to as isolated learning since it does not consider any previously learned knowledge from the 
past model [261]. On the contrary, we human use previously learned knowledge to solve problems 
and to make a decision. The issue of isolated learning is that it does not retain, accumulate, and use 
past knowledge for future learning and decision-making as a human does. Lifelong machine learning 
(LML) is the learning paradigm that mimics the human learning process and capability, that is, using 
gained knowledge from previous tasks seamlessly in future learning and over time learning more and 
more to become more knowledgeable.  

 
Definition of LML 
LML is a continuous learning process. The general idea of LML is that a system has performed n tasks. 
When the system is doing (n+1)th task, it uses the knowledge obtained from the n task to complete 
the (n+1)th task. Here the system needs to accumulate the knowledge in a knowledge base and, when 
required, retain that knowledge from previous learning. We can define LML as follows: 
 
Consider at a given time a learning is performed n sequence of learning tasks, T1, T2,….,Tn. These tasks 
are called previous tasks and each of them have corresponding datasets D1, D2,…, Dn. Here tasks can 
be same or different type and can come from same or different domains. The learner utilizes and takes 
the leverage of previous knowledge from the knowledge base (KB) when the learner has to solve a new 
or current task Tn+1 with the new dataset Dn+1. The goal of LML is to optimize the performance on the 
new task Tn+1, but it can optimize on any task by treating the rest of the tasks as the previous tasks. KB 
maintains the knowledge learned and accumulated from learning the prior tasks. After completing 
learning Tn+1, KB is updated with the knowledge (e.g., intermediate and the final results) gained from 
learning Tn+1. The updating can involve consistency checking, reasoning, and meta mining of additional 
higher-level knowledge. 
 
The key characteristics of a LML are: 

• Should have continuous learning process 
• Accumulation and maintenance of the knowledgebase 
• Ability to use past knowledge in future learning 
• Ability to discover new tasks 
• Ability to learn while working on the task 

 
Figure 12 shows a schematic architecture of a LML system that consist of six components, i.e., task 
manager, task-based knowledge miner, knowledge-based learner, Knowledge Base, model, and the 
application domain. The task manager is responsible for receiving and managing tasks in the system. 
Tasks can come sequential manner or can be discovered in the ATM application domain. The centre 
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part of LML architecture is the Knowledge Base that stores previous knowledge learned by a machine 
learning algorithm. The learned knowledge can be the past information obtained from the learning, 
such as the outcome of a machine learning model, patterns identified from data etc. The knowledge 
base can also include meta-knowledge and meta knowledge miner that store suitable knowledge 
representation schemes. Here, the application is the ATM domain for which the model learns new 
knowledge and discover new tasks. The ATM application domain also sends feedback to the 
knowledge-based learner for future improvements of the LML model. Two other essential parts, i.e., 
task-based knowledge miner and knowledge-based learner, mine knowledge and continually update 
and improve the LML model utilising the knowledge base. 

Figure 12. Lifelong Machine learning system Adapted from [261] 

 
Approaches for LML  
Traditionally in ML, a model is developed, tuned, and validated before deployment. Historical data is 
used and tested with some unseen data (test dataset) for generalization during the model 
development process. This approach is known as learning in isolation, and in the future, if it requires 
training the model again with a new dataset, the existing model forgets all the trained information. In 
LML, this problem of forgetting is known as catastrophic forgetting. New approaches to continuous 
learning have been proposed in recent years, but this research is still in its infancy. Some state-of-the-
art models of Deep Learning and neural networks, to name a few, are Elastic Weight Consolidation 
(EWC), Learning without Forgetting (LwF), and progressive neural network. Many different approaches 
address catastrophic forgetting and try to imitate various aspects of how mammals' brains are 
behaving during learning. When a mammal learns a solution to a task, the synapse's plasticity between 
neurons is reduced [262]. That means connections between neurons are strengthened and the 
knowledge learned is more likely to be remembered by the brain. The human brain can also leverage 
the knowledge acquired for one task to improve other tasks' learning. There are solutions such as iCaRL 
(Incremental Classifier and Representational Learning) that instead directly try to deal with the 
problem, slowly adding classes over time [263]. iCaRL demonstrates a solution based partially on 
knowledge distillation, meaning it learns from a more extensive, already-trained network. Several 
approaches have been proposed for LML that are as follows:  
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Inspired by how the human brain addresses continual learning, an approach named Elastic Weight 
Consolidation (EWC) was suggested by Kirkpatrick et al. [262]. The idea is to identify the weights and 
biases necessary for a specific task and constrain them not to change too much. 

 
Learning without Forgetting 
A method proposed by Li and Hoiem [264], Learning without Forgetting (LwF), uses the new tasks 
images during training to maintain the knowledge from the previous tasks. The network records the 
response for the new task’s images using the old task and updates the weights in the network where 
it has a low impact on the old task predictions. 

 
Progressive Neural Network 
As Rusu et al. [5] suggested, a progressive neural network is an approach that leverages the previously 
gained knowledge, and it is immune to catastrophic forgetting. The idea is to add new columns of 
weights for different tasks so that the learned knowledge remains intact while the network learns 
another task, and the new task can draw benefit from the acquired knowledge. With the use of non-
linear lateral connection adapters [265], they reduce the dimensionality from simply duplicating the 
network and in the case of dense layers, another option is used. 

Grow-When-Required Network 

Suggested by Parisi and Ji [266], the Grow-When-Required Network is a model that employs 
unsupervised learning and can adapt its size in term of neurons and connections depending on the 
need. They show results both in terms of utilizing less memory and having a more efficient network 
while still addressing catastrophic forgetting. 

Online Lifelong and Continual Learning 

Existing LMLs are mainly taking either batch learning or takes offline training and testing approach. 
They perform no learning after the learned model is deployed in its intended application, i.e., no 
learning while working on a task or the job. The problems and challenges of online LML are addressed 
by Liu, Bing [267]. Gautam et al. [268] has proposed continual learning for zero-shot learning (CZSL) 
that combines the concept of experience replay with knowledge distillation and regularization. The 
problem of catastrophic forgetting is overcome by utilizing knowledge distillation, where a model is 
trained with the sample’s dark knowledge. 

4.2 SotA on Human Centric AI model in ATM 

AI is now increasingly entering the mainstream and supporting high consequence human 
decisions. However, the effectiveness of these systems will be limited by the machine’s 
inability to explain its thoughts and actions to human users in these critical situations, and fully 
understand the needs and desire of the end-user.  
  
The goal of human-centred AI is to improve the  cooperation between the machine and its computing 
capacity, and the operator and his ability to adapt and make decisions, placing the human in the centre 
of the decision process, in other word, place back human-computer interactions (HCI) in 
XAI [269]. Creating such AI systems for the human by the human requires the end-user to be able to 
understand, trust, and interact with these algorithms, requiring many user-centred innovative 
algorithm visualizations, interfaces, and toolkits [161], [270], [271], [272], [273], making human-centric 
AI a cooperative [274], [275] and continuous [276] process. Enabling the human to understand the 
machine has been the primary focus of explainability in the last decade. Nonetheless, developed XAI 
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systems are more directed to the developer or the debugger than the final end-user [1]. Although 
some are focused on explanation that might be presented to non-developer [161], [277]. Little 
justification is provided for choosing different explanation types or representations, and it is unclear 
why these explanations will be feasibly useful to actual users or simply understood [278]. Because 
some researchers argue against [152] it. Already existing formal psychological theories which are 
greatly summarized for XAI in [279], [280], [281], [282], are poorly used to guide explanations facilities, 
as argued in [1], [283]. The last concern is essential to move towards human-centric AI since it is 
essential to understand how humans think and also being able to adapt to different ways of thinking. 
As a second or parallel step can be to to understand what information they seek, and what are their 
biases that impair their reasoning, in order to [283] understand what reasoning method trigger actual 
XAI facilities, and how can XAI can be leveraged to mitigate decision biases.  
  
Furthermore, explanation is both a product and a process, in particular a social process [284]. XAI 
systems require to fully understand the user, which means to adapt to the one that receive the 
explanation [283], [285]. This is crucial to determine the explanation requirements for a given problem, 
and understand the ‘why’ behind actions of the user [269]. Furthermore, understanding is rquired  to 
adapt to its socio-technical environment since the AI user will interact with other humans outside of 
the 1-1 human-computer interaction, and thus trust should be transitive to them [286]. Lastly, the 
systems also needs to understand the user to be able to interact with the user, which here is beneficial 
in both ways, i.e., human understanding the machine and machine understanding the human. In 
order to adapt while the XAI systems is in use and not only during the development process to enhance 
the explainability, adapt to the user and possibly provide information which is not about the internal 
state of the AI system [287].  

  

4.3 SotA on Cognitive Human-AI-Interaction Interfaces in ATM 

Indeed in the ATC system, the controller’s work is highly cognitively demanding. Activities for managing 
air traffic, such as solving conflicts, maintaining separation between aircraft and coordinating air 
traffic, involve cognitive processes such as visual scanning, information processing, decision making, 
and attention. In this panorama, technologies and techniques based on the analysis of 
neurophysiological signals [e.g., the electroencephalogram (EEG), the galvanic skin response (GSR), 
etc.] have the potential of providing reliable information about operators’ internal state (namely 
neurometrics) [288], and understanding.  For example, if the operator’s workload is exceeding his/her 
cognitive capacity, or if some kind of incapacitation is occurring, the neurophysiological signals can 
identify them. In this regard, neurometrics related to the operator’s internal states become a necessary 
information to realize a so called Cognitive-HMI (C-HMI, i.e. machine trust in the human). A Cognitive-
HMI is one which automatically adapts the information displayed and functions available based on an 
assessment of operator cognitive state and environmental conditions. The system may also use this 
assessment to execute actions autonomously along an escalating scale of automation (i.e. adaptive 
automation, [289]).  
 
The concept of adaptive automation goes beyond traditional modes of human–computer interaction. 
It entails that the system receives information on the operators’ physical and cognitive status, to then 
adapt its behavior. Examples of such application are the following: 

• interface changes to reduce visual clutter (e.g., filtering nonrelevant flights), or to ease visual 
scanning tasks (e.g., increasing salience of alarms); 



D3.1 REPORT ON STATE OF ART -AI SUPPORT IN ATM  

 

 41 
 

 

 

• changes to interaction modalities to support hand-free operations or to offload the visual 
channel (e.g., haptic or aural feedback would be typical cases); 

• shifts in the processing logic for data filtering or decision support, e.g., moving to a less 
conservative detection logic to reduce the number of nonrelevant alerts being displayed. 

 
In recent years, several neuroergonomic systems, which use neurophysiological measures to trigger 
changes in the state of automation, have been studied and their impact on operators’ performance 
has been analyzed [290]. Pieces of evidence show that people not only think of adaptive systems as 
“co-workers,” but also expect them to behave like humans. Despite its potential advantages, AA also 
holds a potential pitfall. The dynamic behavior changes of adaptive systems make it more complex and 
less predictable for the user. Situations in which users are surprised and confused by “what is the 
system doing?” must be minimized. In this regard, trust in automation is a long-standing issue in ATM. 
EUROCONTROL investigated conflict resolution assistants/advisories nearly 20 years ago [291], and 
they never achieved acceptance by air traffic controllers, with some early lessons discernible [292]. 
These and earlier studies highlight the need to consider the opinion of the end user. Some lessons can 
be learned from flight deck automation, most notably the introduction of first generation of glass 
cockpits [293]. The concept of AA may hence need to be revisited or fine-tuned, to increase the 
operator acceptance. It may be that an intermediate stepping stone is needed, such as adaptable 
automation. In this scenario, the user can trigger advanced automation at her/his discretion, avoiding 
confusion and retaining the sensation of being in control. Users could also regain control if things go 
wrong, and the automation can no longer cope with the situation. In this context, the research 
contribution of neurometrics could address the following two important issues: 

1. Neurometrics could define the thresholds by which to activate the transitions between the 
automation levels (lower or higher than the previous one). Thresholds may be binary (ON–
OFF), or more accurate along larger time windows, to avoid continuous transitions, and to 
consider cumulative effects. For instance, a medium–high workload level lasting for several 
minutes could trigger the same transition as a very high workload peak. Similarly, after a 
sustained period of work with high automation, the same level could be maintained for some 
time, even with low workload to ease recovery. 

2. Neurometrics could provide scientific validation of the AA effectiveness, for instance by 
showing an actual workload decreasing after the AA intervention.  

 
Byrne and Parasuraman [294] assessed that the advantage of applying neurometrics in triggering AA 
was very clear, but the “effective application of psychophysiology in the regulatory role may require 
years of effort and considerable maturation in technology”. Nowadays, 25 years later, such “effective 
application” could become reality due to the progresses in Brain-Computer Interfaces (BCI) research. 
Briefly, a BCI is defined as “a system that measures Central Nervous System (CNS) activity and converts 
it into artificial output that replaces, restores, enhances or improves natural CNS output and thereby 
changes the ongoing interactions between the CNS and its external or internal environment” [295]. 
Such definition summarizes the progresses of the scientific community in this field during the last 
decades, since at the moment the possibility of using the BCI systems outside the laboratories by 
developing applications in everyday life is not just a theory but a potential reality [296]. This technology 
has been defined as passive Brain-Computer Interface (pBCI). In particular, in pBCI technologies, the 
system recognizes the spontaneous brain activity of the user related to the considered mental state 
(e.g., emotional state, workload, attention levels), and uses such information to improve and modulate 
the interaction between the operator and the system itself. Thus, in the context of AA, the pBCIs (or in 
other words C-HMI) perfectly match the needs of the system in terms of Human-Machine Interaction 
[297]. Example of C-HMI has been provided by Aricò and colleagues in the framework of the project 
NINA [298], realizing an AA system based on a continuous and online measure of an EEG-based 
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workload index experienced by operator. Authors demonstrated the effectiveness of the AA system in 
mitigating overload situation, and so to enhance ATCOs performance. In another work, within the 
context of the MINIMA project, Di Flumeri and colleagues demonstrated how a similar system, based 
instead on the online measure of EEG-based vigilance could be used to prevent out-of-the-loop 
phenomenon, during the ATM control of futuristic interfaces [299], [300]. Also, Borghini and 
colleagues, within the framework of STRESS project, demonstrated the possibility to measure even 
online the stress of ATCOs during operational tasks, and how to employ this measure to enhance the 
human performance envelop of operators [301], [302]. 
 
As a conclusion, it has to be underlined that Neurometrics, employed in the framework of Cognitive-
HMI for ATM, could not only provide machine for determining whether the human is still performing 
within acceptable parameters, before adjusting variable autonomy (i.e. machine trust in the human), 
but also if he/she is accepting the machine’s XAI explanation, before adapting that explanation if 
needed (i.e. human trust in the machine). 
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5 Discussion 

 
For the ARTIMATION project, this SotA identified the potential ATM tasks where AI and XAI are needed, 
for example, Take-off Time Prediction, Delay Propagation, and/or Conflict Avoidance. Based on the 
data availability and feasibility, the project can decide an area of the ATM task to be investigated.  
While studying the transparency in AI algorithms in ATM this report considers: 1) SotA on AI/ML in 
ATM, 2) a general explainability in AI/ML, and 3) SotA on Visualization. In the SotA on AI/ML in ATM, 
the study found 4 sub-groups in the design space of AI/ML in ATM, and they are: predication, 
optimization/automation, analysis, and modeling/simulation. These are the selection criteria set for 
the algorithms. Basing bon them, the algorithms are selected that best suits the purposes. The study 
considers the last 10 years of related publications, however, most of the publications are observed 
between the years 2014 and 2021, where prediction and optimization/automation are the most 
frequent ATM tasks that implement AI/ML algorithms. The study found a list of AI/ML algorithms that 
have been applied in the ATM domain recently. Among them i) Multi-Agent Systems (MAS), ii) Neural 
Network (NN), iii) Random Forest (RF), iv) Gradient Boosting Machine (GBM), v) Support Vector 
Machine (SVM), and vi) Linear Regression are used frequently for prediction purpose. On the other 
hand, for the optimization i) Multi-Agent Systems (MAS), ii) Evolutionary Algorithm (EA), mostly 
genetic algorithms, and iii) Simulated Annealing (SA) are considered and a majority of these works 
focus on optimizing the traffic and/or avoiding collisions, from the point of view of the trajectories. 
Thus, the mentioned algorithms will be considered as the most potential for the ARTIMATION project. 
At the same time, while studying explainability in AI/ML, a list of different algorithms is observed that 
can be used for explainability, e.g., SHAP, LIME, Grad-CAM, ANFIS, etc. However, these algorithms 
haven’t been used for the ATM domain or at least not found in the recent publication yet to the best 
of our knowledge.  
 
For the ARTIMATION project, to make the AI/ML algorithm more transparent and explainable, the 
study also identified different techniques for visualization, it can be either i) from a unique and static 
visualization perspectives e.g., with dimension reduction, new way to visualize the data and, ii) by 
combining the visualisation with interactions techniques. Immersive environments are also used in this 
domain, like virtual or mixed representation. Visual analytics is another potential to be considered, 
such as ‘Static’ Visual Analytic, Interactive Visual Analytics, and/or Immersive Visual Analytics. Based 
on the data set availability, the complexity of the task, and the level of transparency ARTIMATION road 
map will decide what algorithm should be used.  
 
ARTIMATION project also considers human-centered AI, that is human and AI system can learn from 
each other through human-computer interactions (HCI) implement in XAI system to understand, trust, 
and interact with these algorithms, requiring many user-centred innovative algorithm visualizations, 
interfaces, and toolkits. This study also investigates the potential algorithms for life-long machine 
learning e.g., Elastic Weight Consolidation (EWC), Learning without Forgetting (LwF), and progressive 
neural network. Again, Cognitive-HMI (C-HMI, i.e., machine trust in the human) is identified for the 
project as it automatically adapts the information displayed and functions available based on an 
assessment of operator cognitive state and environmental conditions. Thus, this report will help the 
ARTIMATION from an overall perspective, i.e., the report will work as the foundational knowledge for 
the direction/roadmap of the development of XAI system in ATM. 
 
So, the state-of-the-art report will be used for the ARTIMATION project as:  
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• We have studied several ATM tasks as potential where AI and ML will be developed with 
explanation. For example, Delay Propagation and Conflict Avoidance is considered as ATM 
tasks in ARTIMATION.  

• As per the above mentioned several AI/ML algorithms listed in the ATM domain and  for 
ARTIMATION, Decision Tree and Random Forest is selected.  

• For explanation in AI part, SHAP, LIME, and ANFIS are selected for the ARTIMATION project.  

• For ARTIMATION, the level of transparency will be provided based on Visual analytics, such 
as ‘Static’ Visual Analytic, Interactive Visual Analytics, and/or Immersive Visual Analytics.  

• Lifelong Machine Learning in ARTIMATION will consider Elastic Weight Consolidation (EWC), 
Learning without Forgetting (LwF), and progressive neural network.  

 
Above mentioned bullet points are the potential algorithm techniques which will be inputted in Task 
3.2 and Task 3.3. In this task, further workshops will be conducted where ATM experts and AI experts 
will be involved. Based on the results from the workshop, a roadmap will be created which will be 
presented through Deliverable 3.2. This roadmap will be followed till the end of the project.  
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6 Conclusions 

One of the main goals of this WP is to define the specifications regarding AI-based solutions 
employment in the ATM field and related support in operational activities based on a state of the art 
(SotA) studies on AI solutions characteristics, together with weaknesses of the current solutions. The 
report presents a general background with related work in the ATM domain where several related 
ongoing/finished projects in the ATM domain are addresses. To identify AI transparency in ATM, first, 
a state of the art of AI/ML algorithms in the ATM domain is analysed. The state-of-the-art provides 
specific ML/AI algorithms that are analysed here. Then an overview of AI/ML and their explainability is 
provided. Again, a state-of-the-art study on different visualization technics and approaches in the ATM 
domain are given. Finally, an overview on lifelong machine learning with human-centered AI is 
presented where a SotA on human centric AI model development and a SotA on cognitive human-AI-
interaction interfaces in the ATM domain is presented. Several other issues in ATM are identified that 
can be solved by AI in the future. 
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